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In an article [4] in this journal in 1963, Everett observed that 

if x is optimal in 

m 

■■•-. 

A, 

f 

1 

(1) Maximize    f(x) - E u g (x), 

i=l x e X 

where the m constants u. are non-negative "multipliers" and f and the 

g. are arbitrary real-valued functions defined over an arbitrary set 

X, then x also maximizes f(x) over all x e X satisfying g.(x) £ g.(x ) 

(i»l, ..., m).—  Thus to solve 

(2)     Maximize    f(x) subject to g (x) <: b , i-lt ..., m, 

x e X 

where the b, are given constants (it is convenient to tnink of the b. 

as the amounts of available resources) it is sufficient to find non- 

negative multipliers u such that -- and this we call Everett's 

Condition •- a corresponding optimal solution x of (1) can be found 

Any views expressed in this paper are those of the authors. They 
should not be interpreted as reflecting the views of The RAND Corpora- 
tion or the official opinion or policy of any of its governmental or 
private research sponsors.  Papers are reproduced by The RAND Corpora- 
tion as a courtesy to members of its staff. 

This paper was prepared for submission to Operations Research 
as a Letter to the Editor. 

- This observation is Everett's "Main Theorem" [4, p. 401]. 
I 
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that satisfies g (x ) ■ 0.(1-1, ..., m). If such multipliers exist 

and a convenient mechanism for finding them is available, then solv- 

ing (2) by solving (1) may be computationally convenient. For many 

problems of practical interest, however, such multipliers do not exist; 

but there may still be multipliers for which the g.(x°) approximate 

the b closely enough for x to be a useful approximate solution to 

(2). This approach amounts to reducing (2) to a problem without the 

g constraints. 

The k  step (Iä2) of the iterative procedure implicitly suggested 

by Everett for finding an (approximate) solution to (2) is (here u s 

<V •••• um>): 

1  1      k-1  k-1 
(k.l)    Based on knowledge of u , x , ..., u  , x  , 

choose multipliers u £ 0 (i"l, ..., m) in an 

attempt to satisfy Everett's Condition. 

k k 
(k.2)    Solve (1) with u ■ u for an optimal solution x . 

(k.3)    If gt(x
k) is "sufficiently near" b , i-1, 

m, then stop; x is sufficiently near to 

being optimal in (2). Otherwise, go to step k+1. 

Step 1 is the same as the general step, except that it begins with an 

arbitrary u (guessed on the basis of past experience with a similar 

problem, say), It is assumed that some method is available for per- 

2/ 
forming substep (k.2).-  How to perform substep (k.l) when mi 2 was 

2/ 
— Throughout this paper we assume, as Everett did implicitly in 

his, that (1) achieves its maximum for any set of non-negative multi- 
pliers. A sufficient condition for this when XCR° is that X be 
closed and bounded and f and the g. be continuous. Similar sufficient 
conditions exist for more general spaces (e.g., [2, p. 69]). See also 
footnote 4. 
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3/ 
left largely unresolved by Everett, and stimulated the present note.- 

The main purpose of this note is to indicate how one might approxi- 

mate the desired multipliers by means of linear programming. First, 

however, we weaken Everett's Condition slightly so that his approach 

can be applicable to problems with ineffectual constraints. A rela- 

tion then becomes apparent to the saddle-point condition of Kuhn and 

Tucker [8] for nonlinear programming. Since Everett's approach seems 

most competitive with other known methods for certain discrete alloca- 

tion problems, we consider this case in some detail. It will be seen 

that Everett's method, when the multipliers are found by linear pro- 

gramming, becomes essentially the Simplex method with a "column- 

generating" feature applied to an approximation of (2). Finally, we 

point out a relation to the so-called decomposition method of concave 

programming [3, 10] for continuous allocation problems. 

Weakening Everett's Condition 

In certain problems with ineffectual constraints, Everett's 

Condition is unnecessarily restrictive in that, when a multiplier is 

zero, it- is not necessary to require that the corresponding constraint 

be satisfied with strict equality. All that is needed is to find x 

and u such that 

(i) x is optimal in (1) with u ■ u and 

(ii) u° £ 0 and u° > 0 (resp. - 0) implies 

gi(x°) - b1 (resp. £ b^, i«l, ..., m. 

It is easily shown that if these conditions are satisfied, then x is 

optimal in (2). We shall henceforth deal with this slightly modified 

version of Everett's approach. 

—'We would like to thank David McGarvey for encouraging our interest 
in this question. 



**** i». iM..iM> "^BP* "****'<lg"."381l>!1Jf?"^!"iS'""' "* ""——-——~——— --....-...■»    a...-»  — . -. —■»■  lt>„ „(pB^u.KaiWii^'Kiwipij ^w. .i i)n. in .i a. 

■1 

-4- 

It is of interest to note that (i) and (ii) are equivalent to 

the requirement that (x , u ) be a saddle-point of the Lagrangian 

m 
L(x, u) s f(x) - £ u (g (x) - b ), i.e., 

i-1 X    l     1 

L(x, u°) £ LCx°, u°) <: L(x°, u) for all x€X and ufcO. 

Thus Everett's approach is seen to be essentially the attempt to con- 

struct a saddle-point for L(x, u). Kuhn and Tucker [8] and others 

have given conditions on (2) which guarantee the existence of such a 

saddle-point. The basic condition for Euclidean spaces is that X be 

a convex set, fa concave function, and the g. convex functions which 

satisfy any one of a number of mild qualifications [l]. Similar con- 

ditions for more general spaces are known (see, e.g., [7]). Un- 

fortunately, such conditions do not cover the case in which X is 

discrete, the situation of greatest interest to Everett and perhaps 

the one in which his (modified) approach is most promising. 

Finding the Multipliers by Linear Programming 

When (2) is a linear programming problem, i.e., when X is the 

non-negative orthant of E and f and the g are linear functions, then 

it is not difficult to show that (x°, u°) satisfies conditions (i) 

and (ii) above if and only if x solves (2) and u solves the dual of 

(2). The u are often interpreted as the "dual prices" associated 

with (2), and are produced as an automatic by-product of the computa- 

tional solution of (2). Dropping the assumption of linearity now, 

and observing that the burden of substep (k.l) is to approximate such 

prices on the basis of the data u , x , ..., u  , x  , it seems 

natural to use linear programming to compute the prices corresponding 
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to a linearized version of (2) over the convex hull of the grid 

1      k-1 
<x , .... x  >. The resulting linear program, the dual prices of 

which are required at substep (k.l), is: 

k-1 k-1 
(3)     Maximize   2 X f(x ) subject to 2 X - 1 

xt*o        ** « 
k-1 
2 X g (x ) -£ b , i-1, ..., m. 
t-1 C 1 1 

Substep (k.l LP): Solve (3) for the dual prices 

k  k      k 
un, u-, ..., u corresponding to the ra+1 constraints, 
u  i      m 

By linear programming theory, u * 0 (i«l, ..., m). The signifi- 

cance of u will become apparent below. 

Discrete Case 

If X « {§., ..., § }, where N is a finite positive integer, then 

Everett's procedure using (k.l LP) is very close to the Simplex 

method for the linear programming problem 

CO 
N N 

Maximize   2 X f(g ) subject to 2 X - 1 

N 
2 \i   gi(5j) £ bi$   i-1, ..., Si. 

The sub-problem (1), which now takes the form 

m 
(5)     Maximize       f(§) - 2 u* g^S), 

does nothing more than determine (by the usual Simplex criterion) 

which new variable to bring into the basis at the k  iteration.— 

47 
— In practice one probably would not solve (5) completely at 

every step, particularly in the early steps or when N is very large; 
from the theory of the Simplex method it is known that it is enough 
to find a §. that gives a value greater than u|S to the maximand. 
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This permits the economy of carrying explicitly at one time no more 

than m+1 of the N columns corresponding to the § . The usual Simplex 

termination signal occurs at the first step k such that 

m 
(6) Maximize       [f(§) - S u* g^?)] i  uj 

5®I§i> •••» 5jji 

(actually the maximum will • u ). Thus in the finite discrete case 

Everett18 procedure becomes precisely the Simplex method applied to 

(4) with a "column-generation" feature if substep (k.3) is replaced 

by 

Substep (k.3 LP); If (6) holds, stop. 

Otherwise, go to step k + 1. 

Since (4) is a finite linear program, Everett's procedure with sub- 

steps (k.l LF) and (k.3 LP) is finitely convergent to the optimal 

solution X , j«l, ..., N, of (4). 

This method has been used to advantage by Gilmore and Gomory 

[6]. In their problem a §. was a cutting pattern, and the subproblem 

a knapsack problem. 

The question arises regarding the relation of the optimal solu- 

tion of (4) to the original problem (2). Harking back to Everett's 

discussion of his method in terms of "payoff-constraint space," we 

see that if the points (f(§,,). g^Sj), ..., ^(Sj)) cR^Ü-l, ..., N) 

are sufficiently dense near the boundary of their convex hull, then 

some of the policies £ corresponding to \   >  0 (and there will be no 

more than ra-,-1 of these) will be good approximate solutions to (2). 

Note that it is not necessary to store all of the g. correspond- 

ing to the basic X as the calculations proceed, but only the correspond- 

ing f(5.) and giC?i), i»l, ..., m. After termination, the "basic" $ 
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can be recovered if desired by utilizing the fact that they "price 

*   ko 
out" to 0. That is, they achieve the maximum u s u  in (6). In 

it 
fact all of the g. that achieve u in (6) are "used" by some optimal 

solution of (4). If it is desired to examine (7.j) for the £. used 

in near-optimal solutions of (4), then one should recover the §. 

that satisfy 

(8)      t(%4)  - S u* g,(?4) * u* - c U%.)  - £ u, ,l(Sj) * uo . 

for some suitably small e > 0. 

A possibly useful interpretation of (4) is the following:  it 

is the extension of (2) from pure to mixed (randomized) strategies 

with f and the g replaced by their expectations. In this interpreta- 

tion, \. is the probability of utilizing allocation ?.. When mixed 

strategies have a legitimate and acceptable interpretation, then (2) 

should have been written as (4) in the first place.— 

Continuous Case 

If X is not a finite discrete set, then the analysis of the pre- 

vious case is complicated by the fact that there are an infinite 

number of variables in (4). Nevertheless, Everett's procedure using 

substep (k.l LP) is almost exactly the so-called decomposition pro- 

cedure lor nonlinear programming [3, 10]. When X is a bounded convex set 

and f is concave and the g, are convex functions, then the sequence 
k-1   t 

1 

< Z   \  x > converges [3, 9] to an optimal solution of (2) as k -• •. 
t-1 C 

— Cf. Fromovitz [5], and Gilmore and Gomory [6]. 
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